253 research outputs found

    Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity

    Get PDF
    Functional neuroimaging using MRI relies on measurements of blood oxygen level-dependent (BOLD) signals from which inferences are made about the underlying neuronal activity. This is possible because neuronal activity elicits increases in blood flow via neurovascular coupling, which gives rise to the BOLD signal. Hence, an accurate interpretation of what BOLD signals mean in terms of neural activity depends on a full understanding of the mechanisms that underlie the measured signal, including neurovascular and neurometabolic coupling, the contribution of different cell types to local signalling, and regional differences in these mechanisms. Furthermore, the contributions of systemic functions to cerebral blood flow may vary with ageing, disease and arousal states, with regard to both neuronal and vascular function. In addition, recent developments in non-invasive imaging technology, such as high-field fMRI, and comparative inter-species analysis, allow connections between non-invasive data and mechanistic knowledge gained from invasive cellular-level studies. Considered together, these factors have immense potential to improve BOLD signal interpretation and bring us closer to the ultimate purpose of decoding the mechanisms of human cognition. This theme issue covers a range of recent advances in these topics, providing a multidisciplinary scientific and technical framework for future work in the neurovascular and cognitive sciences

    More than just summed neuronal activity: how multiple cell types shape the BOLD response

    Get PDF
    Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain—local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons—contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease

    Predictors of quality of life ratings from persons with dementia: the role of insight

    Get PDF
    Objective: Evidence suggests that people with dementia are able to respond accurately and consistently to questions about quality of life (QoL), although large discrepancies exist between patient and proxy ratings. This may be due, in part, to the reduced insight of the person with dementia. The aim of this study was to explore the predictors of QoL ratings in a sample of people with mild dementia, with a particular focus on the role of insight. Methods: Sixty-nine participants and their caregivers were recruited from a memory clinic setting. The Bath Assessment of Subjective Quality of Life in Dementia (BASQID), Alzheimer’s Disease-Related Quality of Life Scale, Memory Functioning Scale, Alzheimer's Disease Cooperative Study Activities of Daily Living (ADL) Inventory and Mini Mental Status Examination were administered. Results: Regression analyses indicated that the strongest predictor of QoL ratings from persons with dementia was their awareness of memory function, such that lower awareness was associated with higher QoL ratings. Proxy ratings of activity performance and enjoyment of activity were also significant predictors of BASQID scores. Conclusions: Awareness of memory function impacts directly on patient QoL ratings and can also mask the effects of changes in other outcomes such as ADL function. Measures of awareness should therefore be employed alongside patient QoL ratings in order to ensure they are interpreted accurately. Discrepancies between patient and proxy QoL ratings do not necessarily occur because of patient unreliability, but may instead reflect the application of distinct modes of QoL assessment that emphasise very different outcomes

    Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience

    Get PDF
    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues

    Short term (14 days) consumption of insoluble wheat bran fibre-containing breakfast cereals improves subjective digestive feelings, general wellbeing and bowel function in a dose dependent manner

    Get PDF
    This study investigated whether increasing insoluble (predominantly wheat bran) fibre over 14 days improves subjective digestive feelings, general wellbeing and bowel function. A single centre, multi-site, open, within subjects design with a 14 day non-intervention (baseline) monitoring period followed by a 14 day fibre consumption (intervention) period was performed. 153 low fibre consumers (<15 g/day AOAC 985.29) completed a daily symptom diary for 14 days after which they consumed one bowl of ready-to-eat breakfast cereal containing at least 5.4 g fibre (3.5 g from wheat bran) for 14 days and completed a daily symptom diary. Significant improvements were demonstrated in subjective perception of bowel function (e.g., ease of defecation) and digestive feelings (bloating, constipation, feeling sluggish and digestive discomfort). Significant improvements were also found in subjective perception of general wellbeing (feeling less fat, more mentally alert, slim, happy and energetic whilst experiencing less stress, mental and physical tiredness, difficulty concentrating and fewer headaches). In general, improvements in study outcomes increased with increasing cereal/fibre consumption. However, consuming an additional minimum 5.4 g of fibre (3.5 g wheat bran) per day was shown to deliver measurable and significant benefits for digestive health, comfort and wellbeing. Encouraging consumption of relatively small amounts of wheat bran could also provide an effective method of increasing overall fibre consumption

    Respiratory Syncytial Virus Binds and Undergoes Transcription in Neutrophils From the Blood and Airways of Infants With Severe Bronchiolitis

    Get PDF
    Background. Neutrophils are the predominant cell in the lung inflammatory infiltrate of infants with respiratory syncytial virus (RSV) bronchiolitis. Although it has previously been shown that neutrophils from both blood and bronchoalveolar lavage (BAL) are activated, little is understood about their role in response to RSV infection. This study investigated whether RSV proteins and mRNA are present in neutrophils from blood and BAL of infected infants

    Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain.

    Get PDF
    The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N = 6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data

    The logic-bias effect: The role of effortful processing in the resolution of belief-logic conflict.

    Get PDF
    According to the default interventionist dual-process account of reasoning, belief-based responses to reasoning tasks are based on Type 1 processes generated by default, which must be inhibited in order to produce an effortful, Type 2 output based on the validity of an argument. However, recent research has indicated that reasoning on the basis of beliefs may not be as fast and automatic as this account claims. In three experiments, we presented participants with a reasoning task that was to be completed while they were generating random numbers (RNG). We used the novel methodology introduced by Handley, Newstead & Trippas (Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 28-43, 2011), which required participants to make judgments based upon either the validity of a conditional argument or the believability of its conclusion. The results showed that belief-based judgments produced lower rates of accuracy overall and were influenced to a greater extent than validity judgments by the presence of a conflict between belief and logic for both simple and complex arguments. These findings were replicated in Experiment 3, in which we controlled for switching demands in a blocked design. Across all three experiments, we found a main effect of RNG, implying that both instructional sets require some effortful processing. However, in the blocked design RNG had its greatest impact on logic judgments, suggesting that distinct executive resources may be required for each type of judgment. We discuss the implications of our findings for the default interventionist account and offer a parallel competitive model as an alternative interpretation for our findings
    corecore